紫金矿业历史最高价和最低价(紫金矿业今年最

股票入门 2023-01-13 11:33www.16816898.cn炒股票新手入门
  • 紫金矿业(601899)今年能涨到最高多少钱左右?
  • 紫金矿业历史最高股价是多少?
  • 历史中紫金矿业跌到多少
  • 紫金矿业最低价多少
  • 中国铁通是不是在去年已被中国移动通信集团公司收购?
  • 电脑报上说中国移动准备收购腾讯,有这回事吗?
  • 中国移动收购联通是不是真的吗?
  • 1、紫金矿业(601899)今年能涨到最高多少钱左右?

    601899 紫金矿业。该股前日低点触底后,股价一度回落到了60日均线之下,于是便有了八个交易日震荡走高的、大幅的走强回升,现价8.00。KDJ指标处于高位向上的位置,预计短线后市,股价还将会有小幅度地冲高到8.30,短线反弹到位后的中线上的走势,还将会再经过一个整理蓄势后,还能够再度反弹到9.10(KDJ指标运行高程股价对位所做的预测推算)。后市短线确定的是还会有一个小幅度的上冲,建议还需谨慎持有,短线仅可小幅看多 (但在短线反弹到位后,或可要有一个短线逢高减仓的操作),而在其中线上,还是要再经过一个小幅下探的走强中看多。 【以下为一则附文赠言】你我有幸一同相逢在股票问答的这一界面,其间提供了一定的个股方面的提示资讯以及相关的操作建议,而在这其中定量的量化分析,还可以给你带来更大的可操作性,惟愿你能够很好地把握这一投资机会,一切顺遂如愿。(被访问者: 冰河古陆)
    采纳哦

    2、紫金矿业历史最高股价是多少?

    历史最高22元,2008年4月25日上市那天,从此就。。。。。

    3、历史中紫金矿业跌到多少

    没有最低只有更低

    4、紫金矿业最低价多少

    是负数,主力的成本经过多次高送转和除权分红,他的成本已经是负的了,也就是说即使跌到0元,公司倒闭庄家依然不亏损

    5、中国铁通是不是在去年已被中国移动通信集团公司收购?

    纸黄金不如现货黄金好,纸黄金要全额交易而且只能做涨,走势也是跟随现货黄金的走势。
    现货黄金能做涨做跌,国际市场每天波动大,上星期波动44美金,我的客户资金都翻了2倍了,想赚钱是要选一个好品种!
    06年股票好,07年房产好,0809就当属现货黄金了!
    现货黄金是国内最好的投资品种,想了解看我空间里面有详细介绍

    6、电脑报上说中国移动准备收购腾讯,有这回事吗?

    反过来说我还有点相信。

    7、中国移动收购联通是不是真的吗?

    勾股数又名毕氏三元数
    凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数。
    ①观察3,4,5;5,12,13;7,24,25;…发现这些勾股数都是奇数,且从3起就没有间断过。计算0.5(9-1),0.5(9+1)与0.5(25-1),0.5(25+1),并根据你发现的规律写出分别能表示7,24,25的股和弦的算式。
    ②根据①的规律,用n的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间的两种相等关系,并对其中一种猜想加以说明。
    ③继续观察4,3,5;6,8,10;8,15,17;…可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用上述类似的探索方法,之间用m的代数式来表示它们的股合弦。
    设直角三角形三边长为a、b、c,由勾股定理知a^2+b^2=c^2,这是构成直角三角形三边的充分且必要的条件。,要求一组勾股数就是要解不定方程x^2+y^2=z^2,求出正整数解。
    例已知在△ABC中,三边长分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1),求证∠C=90°。此例说明了对于大于2的任意偶数2n(n>1),都可构成一组勾股数,三边分别是2n、n2-1、n2+1。如6、8、10,8、15、17,10、24、26…等。
    再来看下面这些勾股数3、4、5,5、12、13,7、24、25,9、40、41,11、60、61…这些勾股数都是以奇数为一边构成的直角三角形。由上例已知任意一个大于2的偶数可以构成一组勾股数,实际上以任意一个大于1的奇数2n+1(n>1)为边也可以构成勾股数,其三边分别是2n+1、2n2+2n、2n2+2n+1,这可以通过勾股定理的逆定理获证。
    观察分析上述的勾股数,可看出它们具有下列二个特点
    1、直角三角形短直角边为奇数,另一条直角边与斜边是两个连续自然数。
    2、一个直角三角形的周长等于短直角边的平方与短边自身的和。
    掌握上述二个特点,为解一类题提供了方便。
    例直角三角形的三条边的长度是正整数,其中一条短直角边的长度是13,求这个直角三角形的周长是多少?
    用特点1解设这个直角三角形三边分别为13、x、x+1,则有169+x2=(x+1)2,解得x=84,此三角形周长=13+84+85=182。
    用特点2解此直角三角形是以奇数为边构成的直角三角形,周长=169+13=182。
    勾股数的通项公式
    题目已知a^2+b^2=c^2,a,b,c均为正整数,求a,b,c满足的条件.
    解答
    结论1从题目中可以看出,a+b>c (1),联想到三角形的成立条件容易得出。
    结论2a^2=c^2-b^2=(c+b)(c-b) (2)
    从(2)中可以看出题目的关键是找出a^2做因式分解的性质,令X=c+b,Y=c-b
    所以a^2=XY,(X>Y,a>Y) (3)
    将Y做分解,设Y的所有因子中能写成平方数的最大的一个为k=m^2,所以Y=nm^2 (4)
    又(3)式可知a^2=Xnm^2 (5)
    比较(5)式两边可以a必能被m整除,且n中不可能存在素数的平方因子,否则与(4)中的最大平方数矛盾。
    同理可知a^2=Yn'm'^2 (6),X=n'm'^2,且 n'为不相同素数的乘积
    将(5)式与(6)式相乘得a^2=(mm')^2n'n,(n,n'为不相同素数的乘积) (7)
    根据(7)知nn'仍然为平方数,又由于n',n均为不相同素数乘积知n=n'(自行证明,比较简单)
    可知a=m'mn
    c=(X+Y)/2=(nm^2+nm'^2)/2=n(m^2+m'^2)/2
    b=(X-Y)/2=n(m'^2-m^2)/2
    a=mnm'
    [编辑本段]勾股数的常用套路
    所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(a,b,c)。
    即a^2+b^2=c^2,a,b,c∈N
    又由于,任何一个勾股数组(a,b,c)内的三个数乘以一个整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。
    关于这样的数组,比较常用也比较实用的套路有以下两种
    1、当a为大于1的奇数2n+1时,b=2n^2+2n, c=2n^2+2n+1。
    实际上就是把a的平方数拆成两个连续自然数,例如
    n=1时(a,b,c)=(3,4,5)
    n=2时(a,b,c)=(5,12,13)
    n=3时(a,b,c)=(7,24,25)
    ... ...
    这是最经典的一个套路,而且由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。
    2、当a为大于4的偶数2n时,b=n^2-1, c=n^2+1
    也就是把a的一半的平方分别减1和加1,例如
    n=3时(a,b,c)=(6,8,10)
    n=4时(a,b,c)=(8,15,17)
    n=5时(a,b,c)=(10,24,26)
    n=6时(a,b,c)=(12,35,37)
    ... ...
    这是次经典的套路,当n为奇数时由于(a,b,c)是三个偶数,所以该勾股数组必然不是互质的;而n为偶数时由于b、c是两个连续奇数必然互质,所以该勾股数组互质。
    所以如果你只想得到互质的数组,这条可以改成,对于a=4n (n>=2), b=4n^2-1, c=4n^2+1,例如
    n=2时(a,b,c)=(8,15,17)
    n=3时(a,b,c)=(12,35,37)
    n=4时(a,b,c)=(16,63,65)
    ... ...
    ========Edard补充========
    对于N 为质因数比较多的和数时海可以参照其质因数进行 取相应的勾股数补充,即1个N会有多对的勾股数,例如
    n=9时(a,b,c)=(9,24,25)or (9,12,15) --------3 (3,4,5)
    n=12时(a,b,c)= (12,35,37) or (12,16,20) ----- 4(3,4,5)
    =========ShangJingbo补充=======
    还有诸如此类的勾股数,20、21、29;
    119、120、169;
    696、697、985;
    4059、4060、5741;
    23660、23661、33461;
    137903 137904 195025
    803760 803761 1136689
    4684659 4684660 6625109
    ……
    已有三千年研究历史的勾股定理还有研究的空间吗? 我用本文试探索。
    勾 股 数
    1. 定义凡符合X^2+Y^2=Z^2公式的正整数值我们称之为勾股数。X和Y是直角边,Z是斜边。
    2. 凡有公约数的勾股数我们称之为派生勾股数,例[30,40,50] 等;
    3. 无公约数的勾股数,例[3,4,5];[8,15,17]等,我们称之为勾股数。全是偶数的勾股数必是派生勾股数,三个奇数不可能符合定义公式。,勾股数唯一的可能性是
    X和Y分别是奇数和偶数(偶数和奇数),斜边Z只能是奇数。
    4. 勾股数具有以下特性
    斜边与偶数边之差是奇数,这个奇数只能是某奇数的平方数, 例1,9,25,49,……,至无穷大;
    斜边与奇数边之差是偶数,这个偶数只能是某偶数平方数的一半, 例2,8,18,32,……,至无穷大;
    5. 由以上定义我们推导出勾股公式
    X = P^2 + PQ (X等于P平方加PQ)
    Y = Q^2/ 2 + PQ (Y等于二分之Q方加PQ)
    Z = P^2 + Q^2 / 2 + PQ (Z等于P平方加二分之Q方加PQ)
    6. 此公式涵盖了自然界的全部勾股数,包括派生勾股数。
    7. 用此公式很容易导出全部勾股数,例如2000以内的勾股数计有320组,(不含派生勾股数)。最大的一组是 [315, 1972, 1997]
    8. 斜边是1105和1885的勾股数各有4组
    [47,1104,1105] [264,1703,1105] [576,943,1105] [744,817,1105];
    [427,1836,1885] [1003,1596,1885] [1643,924,1885] [1813,516,1885];
    9. 以任意奇数代入P ,任意偶数代入Q ,即可得到唯一一组勾股数。
    例如P = 5 ,Q = 8 ,得到
    X = 25 + 5×8 = 65
    Y = 32 + 5×8 = 72
    Z = 25 + 32 + 5×8 = 97
    10. 它极清楚地显示出了斜边与偶数直角边之差是奇数的平方,斜边与奇数直角边之差是偶数平方值的一半,而斜边则是由奇数的平方与偶数平方的一半和此奇数与偶数之积三项之和所构成。
    11. 当P与Q有公约数时,例如9与12 ,再例如21与28等,推导出来的是派生勾股数;
    当P与Q无公约数时,例如9 与8 ,再例如21与16等,推导出来的是勾股数;
    12. 不存在不符合本公式的勾股数。例如有人奉献趣味勾股数[88209,90288,126225],它实际 是个派生勾股数,它是[297,304,425]乘297倍而成,它是由P = 11和Q = 16导出。
    13. 本文所提供的公式是依据本文第4条的两条勾股数特性规律推导而出,它可以与六百年前印度婆罗门笈多公式相互推导。
    14. 依据本公式勾股定理可从正整数拓展到负整数。在笛卡尔座标图上,勾股三角形可以在更大的位置上显现。
    [编辑本段]勾股数公式及证明
    a=2mn
    b=m^2-n^2
    c=m^2+n^2

    假设a^2+b^2=c^2,这里研究(a,b)=1的情况(如果不等于1则(a,b)|c,两边除以(a,b)即可)
    如果a,b均奇数,则a^2 + b^2 = 2(mod 4)(奇数mod4余1),而2不是模4的二次剩余,矛盾,所以必定存在一个偶数。不妨设a=2k
    等式化为4k^2 = (c+b)(c-b)
    显然b,c同奇偶(否则右边等于奇数矛盾)
    作代换M=(c+b)/2, N=(c-b)/2,显然M,N为正整数
    现在往证(M,N)=1
    如果存在质数p,使得p|M,p|N, 那么p|M+N(=c), p|M-N(=b), 从而p|c, p|b, 从而p|a,这与(a,b)=1矛盾
    所以(M,N)=1得证。
    依照算术基本定理,k^2 = p1^a1 p2^a2 p3^a3 ...,其中a1,a2...均为偶数,p1,p2,p3...均为质数
    如果对于某个pi,M的pi因子个数为奇数个,那N对应的pi因子必为奇数个(否则加起来不为偶数),从而pi|M, pi|N,(M,N)=pi>1与刚才的证明矛盾
    所以对于所有质因子,pi^2|M, pi^2|N,即M,N都是平方数。
    设M = m^2, N = n^2
    从而有c+b = 2m^2, c-b = 2n^2,解得

    Copyright © 2016-2025 www.16816898.cn 168股票网 版权所有 Power by