钙钛矿太阳能的制备流程(钙钛矿太阳能博士)
1、钙钛矿太阳能电池 溶液法制备的CH3NH3PbI3这个材料是n型还是p型
这是一个双极性材料,基本上是本征半导体,载流子浓度极低,大约109次方的载流子浓度,
也是一个高阻材料,是一个弱p型的材料,一般把它看成是本征的,所以钙钛矿是P-i-N的器件结构,
P型的材料,可以是有机的PEDOT,Spiro以及其他有机芳胺类高分子或小分子空穴传输材料,
或者是无机的P型材料CuI,CuO,CuS,NiO,MoO3,CuSCN等等,
N型的材料可以是TiO2,SnO2,ZnO,C60,PCBM等等无机或者有机的电子传输材料,
所以钙钛矿有三个研究方向,做P材料,做i吸光层钙钛矿材料,做N材料,
加上器件结构正置或者倒置,这样可以组合出大量的paper,
可以养活众多的科研工作者,很少有一个方向像钙钛矿电池一样,
DSSC,OPV, 其他薄膜电池甚至单晶硅多晶硅电池都能参与进来。
2、钙钛矿太阳能电池制成半电池怎么测试它的性能
可以的!由于钙钛矿太阳能电池性能不稳定,所以很多实验室采用在手套箱中进行IPCE测试,避免了将钙钛矿太阳能电池暴露在空气中影响其性能。已经有集成手套箱的钙钛矿太阳能电池IPCE测试系统了,这里不详述,具体问曹全喜
I3I,2475,3246
3、钙钛矿型太阳能电池材料制作工艺成熟吗
1、硅片切割,材料准备工业制作硅电池所用的单晶硅材料,一般采用坩锅直拉法制的太阳级单晶硅棒,原始的形状为圆柱形,然后切割成方形硅片(或多晶方形硅片),硅片的边长一般为10~15cm,厚度约200~350um,电阻率约1Ω.cm的p型(全球节能环保网掺硼)。2、去除损伤层硅片在切割过程会产生大量的表面缺陷,这就会产生两个问题,表面的质量较差,这些表面缺陷会在电池制造过程中导致碎片增多。要将切割损伤层去除,一般采用碱或酸腐蚀,腐蚀的厚度约10um。3、制绒制绒,就是把相对光滑的原材料硅片的表面通过酸或碱腐蚀,使其凸凹不平,变得粗糙,形成漫反射,减少直射到硅片表面的太阳能的损失。对于单晶硅来说一般采用NaOH加醇的方法腐蚀,利用单晶硅的各向异性腐蚀,在表面形成无数的金字塔结构,碱液的温度约80度,浓度约1~2%,腐蚀时间约15分钟。对于多晶来说,一般采用酸法腐蚀。4、扩散制结扩散的目的在于形成PN结。普遍采用磷做n型掺杂。由于固态扩散需要很高的温度,在扩散前硅片表面的洁净非常重要,要求硅片在制绒后要进行清洗,即用酸来中和硅片表面的碱残留和金属杂质。5、边缘刻蚀、清洗扩散过程中,在硅片的周边表面也形成了扩散层。周边扩散层使电池的上下电极形成短路环,必须将它除去。周边上存在任何微小的局部短路都会使电池并联电阻下降,以至成为废品。目前,工业化生产用等离子干法腐蚀,在辉光放电条件下通过氟和氧交替对硅作用,去除含有扩散层的周边。扩散后清洗的目的是去除扩散过程中形成的磷硅玻璃。6、沉积减反射层沉积减反射层的目的在于减少表面反射,增加折射率。广泛使用PECVD淀积SiN,由于PECVD淀积SiN时,不光是生长SiN作为减反射膜,生成了大量的原子氢,这些氢原子能对多晶硅片具有表面钝化和体钝化的双重作用,可用于大批量生产。7、丝网印刷上下电极电极的制备是太阳电池制备过程中一个至关重要的步骤,它不仅决定了发射区的结构,而且也决定了电池的串联电阻和电池表面被金属覆盖的面积。最早采用真空蒸镀或化学电镀技术,而现在普遍采用丝网印刷法,即通过特殊的印刷机和模版将银浆铝浆(银铝浆)印刷在太阳电池的正背面,以形成正负电极引线。8、共烧形成金属接触晶体硅太阳电池要通过三次印刷金属浆料,传统工艺要用二次烧结才能形成良好的带有金属电极欧姆接触,共烧工艺只需一次烧结,形成上下电极的欧姆接触。在太阳电池丝网印刷电极制作中,通常采用链式烧结炉进行快速烧结。9、电池片测试完成的电池片经过测试分档进行归类。
4、如何提高钙钛矿太阳能电池的开路电压
高效钙钛矿太阳能电池中,最常用的吸光材料是CH3NH3PbI3,其带隙约为1.5eV[20],能充分吸收400~800nm的可见光,比钌吡啶配合物N719高出一个数量级。CH3NH3PbI3吸光材料有很好的电子传输能力,并具有较少的表面态和中间带缺陷,有利于光伏器件获得较大的开路电压,是钙钛矿太阳能电池能够实现高效率光电转化的原因。目前常用的空穴传输材料(Holetransportmaterial,HTM)有spiro-MeOTAD、P3HT(聚3-己基噻吩)、CuI和CuSCN等。韩国Noh研究团队[44]以PTAA作为HTM,所制备的太阳能电池最高光电转换效率为12%。Giao等[24]分别以P3HT和Spiro-OMeTAD作为HTM制备钙钛矿太阳能电池,对比发现两者光电转换效率十分相近,但引入P3HT的器件开路电压(Voc)达到0.93V,高于引入Spiro-OMeTAD器件的开路电压(Voc=0.84V)。在引入空穴传输层的钙钛矿太阳能电池中,对空穴传输层的厚度有较高的要求。例如spiro-OMeTAD层应较薄,以使空穴从spiro-OMeTAD中传输到对电极的阻力最小化,而典型钙钛矿吸光材料的电导率一般在10-3S/cm数量级,为了防止钙钛矿吸光膜层和对电极中发生电流短路现象,spiro-OMeTAD厚度又应适当增加。鉴于以上原因,空穴传输膜层的厚度必须通过不断的实验探索才能达到最优化。,还可通过采用渗透性更好的空穴传输材料来获得更高的填充系数和光电转换效率。针对目前常用的空穴传输材料spiro-OMeTAD合成路线复杂、价格昂贵等问题,科研人员研制了一系列易于合成且成本低廉的小分子作为空穴传输材料。Christians和Qin等[45,46]分别以CuI和CuSCN作为空穴传输材料,实验结果表明CuI的导电性比spiro-OMeTAD好,可以有效改善器件的填充因子,获得6%的光电转换效率;而CuSCN中空穴传输速率为0.01~0.1cm2·V/s,远高于spiro-OMeTAD中空穴传输速率,使得器件短路电流大大增加,光电转换效率为12.4%。这些新型无机空穴传输材料在未来大规模研究和应用中,有望作为spiro-OMeTAD的替代品降低电池的原料成本。最近Fang等[47]采用紫外臭氧表面处理和氯元素界面钝化两个关键技术,在一种结构为FTO/CH3NH3PbI3-xClx/Spiro-OMeTAD/Au无空穴阻挡层的钙钛矿太阳能电池上取得了1.06V的开路电压和14%的光电转化效率。
5、钙钛矿太阳能电池技术中国已走在世界前列了吗?
9月30日消息,2017年诺贝尔化学奖大热技术—钙钛矿太阳能电池,武汉理工大学程一兵团队已取得实质性突破,与理想的大规模应用越来越近。
程一兵今天上午在他的实验室接受科技日报记者独家采访时说该团队开发的5cm x 5cm 塑料基板柔性钙钛矿太阳能电池组件,8月8日通过国家光伏质量监督检验中心第三方认证,获得了组件转换效率11.4%的结果,远超日本东芝公司于今年9月25日宣布的5cm x 5cm柔性钙钛矿太阳能电池组件10.5%的转换效率世界纪录。10cm x 10cm 玻璃基板钙钛矿太阳能电池组件制备技术也获得重大突破,在国家光伏质量监督检验中心验证的组件效率为13.98%,居国际同类产品第三方论证效率首位。
图为5cm x 5cm塑料基板的柔性电池
钙钛矿太阳能电池是《科学》杂志评选的2013 年度国际上十大科技突破之一,是一种有望进一步降低光伏发电价格的新型光伏体系。武汉理工大学程一兵团队多年来致力于该光伏产品组件的生产技术开发工作。
前不久,科睿唯安发布了2017年的各奖项“引文桂冠奖”。自2002年以来,45位获得“引文桂冠奖”的科学家荣膺诺贝尔奖,该奖被认为是“诺奖风向标”。
今年,科睿唯安化学领域获得“引文桂冠奖”的有三项。其中第三项授予日本的宫坂力(Tsutomu Miyasaka)、韩国的朴南圭(Nam-Gyu Park)以及英国的亨利·J·斯内斯(Henry J.Snaith),他们因为发现并应用钙钛矿材料实现有效能量转换而获奖。
北京时间10月4日2017年诺贝尔化学奖就将揭晓,程一兵在获知“钙钛矿太阳能电池技术”成为2017年诺贝尔化学奖“热门”之后,非常兴奋。程一兵团队在上述两项钙钛矿光伏组件的制备技术上的突破,预示着我国科研人员在钙钛矿光伏组件的制备技术上走在了世界的前列。
不管是否获奖,实质上确实有着先进的技术,那比获奖差不到哪里。
6、钙钛矿型太阳能电池是怎么回事呢?
钙钛矿型太阳能电池(perovskite solar cells),是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池,即是将染料敏化太阳能电池中的染料作了相应的替换。在这种钙钛矿结构(,图1)中,A一般为甲胺基,和也有报道;B多为金属Pb原子,金属Sn也有少量报道;X为Cl、Br、I等卤素单原子或混合原子。目前在高效钙钛矿型太阳能电池中,最常见的钙钛矿材料是碘化铅甲胺(),它的带隙约为1.5 eV。钙钛矿太阳能电池的结构如图示,钙钛矿太阳能电池由上到下分别为玻璃、FTO、电子传输层(ETM)、钙钛矿光敏层、空穴传输层(HTM)和金属电极。其中,电子传输层一般为致密的纳米颗粒,以阻止钙钛矿层的载流子与FTO中的载流子复合。通过调控的形貌、元素掺杂或使用其它的n型半导体材料如ZnO等手段来改善该层的导电能力,以提高电池的性能。目前报道的最高效率(~19.3%)的电池使用的即是钇掺杂的。钙钛矿光敏层,多数情况下就是一层有机金属卤化物半导体薄膜。也有人使用的是有机金属卤化物填充的介孔结构(、和骨架),或者两者都存在,但没有证据表明这种结构有助于电池性能的提高。空穴传输层,在染料敏化太阳能电池中,该层多为液态电解质。由于在液态电解质中不稳定,使得电池稳定性差,这也是早期的钙钛矿电池的主要问题。后来,Grätzel 等采用了如spiro-OMeTAD, PEDOT:PSS等固态空穴传输材料,电池效率得到了极大提高,并具有良好的稳定性。特别地,钙钛矿还可以作为吸光和电子传输材料或者作为吸光和空穴传输材料。这样,就可以制造不含HTM或ETM的钙钛矿太阳能电池。
7、钙钛矿太阳能电池的介绍
钙钛矿太阳能电池,科学家们在最新研究中发现,一种钙钛矿结构的有机太阳能电池的转化效率或可高达50%,为目前市场上太阳能电池转化效率的2倍,能大幅降低太阳能电池的使用成本。相关研究发表在最新一期的《自然》杂志上。